Benchmarking Single-Image Dehazing and Beyond
نویسندگان
چکیده
منابع مشابه
Improved Single Image Dehazing Using Guided Filter
Single image dehazing is challenging because it is massively ill-posed. Haze removal based on dark channel prior is effective, but refining the transmission map with closed-form matting is computationally expensive. Recent work discovered that using guided filter to refine the transmission map is feasible. In this paper, we elaborate single image dehazing by combining dark channel prior and gui...
متن کاملSingle Image Dehazing Algorithm Based on Dark Channel Prior and Inverse Image
The sky regions of foggy image processed by all the existing conventional dehazing methods are degraded by color distortion and severe noise. This paper proposes an improved algorithm which combines dark channel prior and inverse image. We first invert the foggy image, and then estimate the transmission of the inverse image. At last, compared with the non-inversed transmission, the larger value...
متن کاملImproving Dark Channel Prior for Single Image Dehazing
This paper proposes an improved dark channel prior for removing haze from images. Dark channel prior is an effective method for removing haze. Dark channel is an image in the same size as the hazy image which is obtained by dividing the RGB images into windows and for each window, the minimum of each R, G and B channels are calculated. Then again the minimum of these three values is calculated ...
متن کاملA Survey Paper On Single Image Dehazing
Images taken in foggy weather condition often suffer from poor visibility and clarity. Images of the outdoor scene which are captured under bad weather conditions contain atmospheric degradation such as haze, fog, smoke caused by the particles present in the atmosphere resulting in the absorption and scattering of the light, which travels from the scene point of the observer. Due to the presenc...
متن کاملGated Fusion Network for Single Image Dehazing
In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2019
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2018.2867951